CARBON-13 SPIN-LATTICE RELAXATION TIMES AND CONFORMATION OF ROSARAMICIN

MOHINDAR S. PUAR

Research Division, Schering-Plough Corporation, Bloomfield, New Jersey, 07003 U.S.A. (Received for publication January 28, 1981)

During the past year we have been interested in the determination of carbon-13 spin-lattice relaxation times of biologically important macrolides such as megalomicins¹). Relaxation times (T₁, second) data are useful in the understanding of conformational and/or isotropic motion of the molecule in solution. We report here the conformation and relaxation behavior of rosaramicin (C₈₁H₅₁NO₉, m/z 581.3569) (1), a potent macrolide antibiotic elaborated by *Micromonospora rosaria*.²⁾

Conformation of Rosaramicin in Solution

Proton (100 MHz) NMR spectra of rosaramicin was studied in deuterium oxide, chloroform*d*, acetone- d_6 , and chloroform - benzene mixtures. In the latter system, all resonances, except for H₂₀, H₁₁, H₃, H₅, and the anomeric protons, gradually shifted upfield from CDCl₃ to C₆D₆ solutions indicating two sites of interactions along the enone and the aldehydic functions.

Proton NMR spectra in acetone- d_{6} are shown

in Fig. 1. Extensive decoupling as well as high resolution (300 and 600 MHz) studies resulted in complete stereochemical assignments of fragments A and B shown above. Analysis of the data, including dihydral angles (ϕ) calculated with the aid of KARPLUS equation³), indicate that pairs of protons H₁₀ and H₁₁ ($J_{10,11}$ =16.0 Hz), H₁₃ and H₁₄ ($J_{13,14}$ =10.0 Hz) and H₁₄ and H₁₅ ($J_{14,15}$ =8.0 Hz, ϕ =160°) are *trans* to each other. In addition, H₁₅ is further coupled to two non-equivalent (J_{gem} =14.0 Hz) methylene protons H_{16A} ($J_{15,16B}$ =3.0 Hz, ϕ =50°, *cis*). The methylene protons are further coupled to protons of 17-CH₃ group.

Fig. 1. Proton NMR spectrum (100 MHz) of rosaramicin in acetone- d_{θ} (A) and its 500 Hz expansion (B).

Carbon	δ, ppmª	T_1 (second) ^a	T_1 (second) ¹
1	173.5	5.6°	
2	39.7	0.23	0.10
3	68.0	0.44	0.17
4	45.1	0.39	0.15 ^{<i>\phi</i>}
5	81.3	0.40	0.16
6	31.4	0.29	0.12
7	31.8	0.17	0.08
8	37.9	0.39	0.17
9	200.9	11.6°	-
10	122.8	0.41	0.18
11	150.9	0.46	0.15
12	59.7	6.0°	
13	66.8	0.41	0.25*
14	41.3	0.45	0.14
15	76.8	0.45	0.13
16	24.7	0.28	0.12
17	9.0	0.51*	0.78
18	9.1	0.51*	0.43
19	43.8	0.23	0.15¢
20	202.9	0.93°	0.81
21	17.4	0.78°	0.42
22	15.0	1.16°	0.53
23	14.5	0.61	0.36
1′	104.5	0.39	0.24
2'	70.4	0.45	0.22
3'	65.4	0.39	0.19
4'	28.4	0.22	0.08
5'	69.7	0.39	0.25*
6'	21.2	0.63°	0.49
7'. 8'	40.5	0.58	0.43

Table 1. ¹³C Chemical shifts and spin-lattice relaxation times of rosaramicin and its salt.

^a Free base in CDCl₃.

^b NaH₂PO₄ Salt in D₂O.

^c Values from additional experiment.

 * and φ values are interchangeable with the same type.

Non-equivalent $(J_{gem}=17.5 \text{ Hz})$ methylene protons H_{2A} and H_{2B} are *cis* $(J_{2A,3}=1.5 \text{ Hz}, \phi=65^{\circ})$ and *trans* $(J_{2B,3}=10.0 \text{ Hz})$, respectively, to H_3 which is further *cis* $(J_{3,4}=1.5 \text{ Hz}, \phi=65^{\circ})$ to H_4 . Proton H_4 is *trans* $(J_{4,5}=10.0 \text{ Hz})$ to H_5 which in turn is *cis* $(J_{5,6}=1.5 \text{ Hz}, \phi=65^{\circ})$ to H_6 . Proton H_6 is a multiplet of considerable complexity. On one hand, it is coupled to two nonequivalent $(J_{gem}=17.5 \text{ Hz})$ methylene protons H_{19A} $(J_{19A,6}=3.0 \text{ Hz}, \phi=50^{\circ} cis)$ and H_{19B} $(J_{19B,6}$ =10.0 Hz, *trans*) which are further identically

coupled (J=1.5, 1.5 Hz) to the aldehydic proton H_{20} . On the other hand, H_6 also is *trans* ($J_{6,7A} =$ 12.5 Hz) and $cis(J_{6,7B}=2.0 \text{ Hz}, \phi=60^{\circ})$ to 7-CH₂ non-equivalent ($J_{gem} = 13.0 \text{ Hz}$) protons H_{7A} and H_{7B} which are further coupled cis ($J_{7A,8} =$ 3.0 Hz, $\phi = 50^{\circ}$) and trans $(J_{7B,8} = 10.0 \text{ Hz})$ to H₈. The desosamine ring possessed all trans stereochemistry⁴). The chemical shifts (δ , ppm) and coupling constants (Hz) of the desosamine protons were, $CH_3 = 1.18$ (d, J = 6.5), $N(CH_3)_2 =$ 2.30 s, H_{1a} =4.36 (d, $J_{1,2}$ =7.0), H_{2a} =3.17 (dd, $J_{2,3}$ =10.0), H_{3a} =2.55 (m, $J_{3,4a}$ =12.5, $J_{3,4e}$ = 4.0), $H_{4a} = 1.20$ (m, $J_{4a,4b} = 13.0$, $J_{4a,5} = 10.0$), $H_{4e}=1.72$ (m, $J_{4e,5}=2.0$) and $H_{5e}=3.55$ (m). Molecular models as well as recent X-ray crystallographic data of rosaramicin⁵⁾ and tylosin⁶⁾ support the NMR analysis.

T₁ Relaxation Data

The nuclear Overhauser enhancement (N.O.E.) value for 1 was 2.06 indicating relaxation mechanism to be completely dominated by 13C-¹H dipolar interactions. Carbon-13 relaxation data of 1 in CDCl₃ and D₂O are presented in Table 1 and Fig. 2 (CDCl₃ only). Carbon-13 shift assignments of 1 were the subject of earlier reports⁷⁾ and, therefore, will not be discussed. The average NT_1 (N=number of directly attached protons) values in CDCl₃ for CH and CH₂ carbons of aglycone and sugar of 0.40 ± 0.05 and 0.41 ± 0.03 second, respectively, suggest that 1 undergoes isotropic motion in solution as a whole. Desosamine has the same degree of freedom as the aglycone⁸⁾. In the case of sodium dihydrogen phosphate salt of 1 in D_2O , the NT₁ values of 0.17 and 0.21 second for aglycone and sugar, respectively, indicate significant reduction in the mobility of the macrolide. The effect of solute-solvent interactions (such as hydrogen-bonding) coupled with tighter aqueous solvation and greater viscosity of D₂O are responsible for the reduced molecular motion of the solute; the latter plays a major role⁹⁾.

Particularly, the T_1 values of 1 indicate that the 15-CH₂CH₃ and 6-CH₂CHO moieties exhibit considerable freedom of motion in solution, *e. g.*, T_1 of 0.93 second for CHO and 0.12 and 0.78 second (in D₂O) for CH₂ and CH₃ carbons, respectively, are larger than the calculated NT₁ values (T₁CHO>0.40 and T₁CH₃>0.51 second). Methyl groups experience some restriction to their motional freedom, except the C₁₂-CH₃ group whose high T₁ value (1.16 second) shows it

Fig. 2. Carbon-13 chemical shifts with T1 (second) relaxation times in paranthesis of rosaramicin in CDCl3.

Rosaramicin (1)

to behave as a freely rotating function like the β axial 18 or 19 methyl groups in steroids (T₁(CH₃)/ T₁(CH)=3) which relax *via* dipole-dipole interactions¹⁰.

Experimental

Proton NMR spectra and decoupling experiments were carried out utilizing Varian Associates XL-100-15 and SC-300 spectrometers. 600 MHz spectra was obtained from Carnegie Mellon University, Pittsburgh, PA. Carbon-13 T_1 relaxation experiments were carried out at 20 MHz utilizing Varian FT-80A spectrometer⁸⁾.

The inversion-recovery pulse sequence, $(180^{\circ}-t_1-90^{\circ}-T)n$, was utilized to calculate T_1 data. For a typical experiment using 8k data point, the spectrometer settings were: sweepwidth=5000 Hz, acq. time=0.819 second, 90° pulse=22 μ sec, 180° pulse=44 μ sec and pulse delay=6 seconds. The values of t_1 (second) were 0.010, 0.020, 0.040, 0.080, 0.160, 0.320, 0.640, 1.281, 2.562, and 5.125. The samples were available as chromatographically separated materials.

Acknowledgements

The author wishes to thank Dr. R. BRAMBILLA for his technical assistance and Prof. A. A. BOTHNER-By for the 600 MHz spectra. NIH is thanked for the support (Grant No. RR00292) of 600 MHz NMR facility at Carnegie Mellon University, Pittsburgh, PA, U.S.A.

References

1) PUAR, M.S. & R. BRAMBILLA: Carbon-13

spin-lattice relaxation times of megalomicins, fourteen-membered macrolide antibiotics. J. Chem. Soc. (Perkin II) 1980: 1847~1848, 1980

- 2) WAGMAN, G. H.; J. A. WAITZ, J. MARQUEZ, A. MURAWSKI, E. M. ODEN, R. T. TESTA & M. J. WEINSTEIN: A new *Micromonospora*-produced macrolide antibiotic, rosamicin. J. Antibiotics 25: 641~646, 1972
- EMSELY, J. W.; J. FEENEY & L. H. SUTCLIFFE: High Resolution Nuclear Magnetic Resonance Spectroscopy, p. 168, Pergamon Press, New York, 1965
- Woo, P.W.K.; H.W. DION, L. DURHAM & H.S. MOSHER: The stereochemistry of desosamine, an NMR analysis. Tetrahed. Lett. 1962: 735~ 739, 1962
- 5) GANGULY, A. K.: Y. T. LIU, O. SARRE, R. S. JARET, A. T. MCPHAIL & K. K. ONAN: Chemical degradation and X-ray crystal structure of rosaramicin. Tetrahed. Lett. 1980: 4699~ 4702, 1980
- 6) ŌMURA, S.; H. MATSUBARA, A. NAKAGAWA, A. FURUSAKI & T. MATSUMOTO: X-Ray crystallography of protylonolide and absolute configuration of tylosin. J. Antibiotics 33: 915~ 917, 1980
- 7) PUAR, M. S.; R. BRAMBILLA, P. BARTNER, D. SCHUMACHER & R. S. JARET: Sch 23831, a novel macrolide from *Micromonospora rosaria*. Tetrahed. Lett. 1979: 2767 ~ 2770, 1979
- 8) For experimental details, ref. 1
- HOWARTH, O. W.: ¹³C Relaxation time study of hydrophobic bonding. J. Chem. Soc., Chem. Comm. 1974: 286~287, 1974
- DODDRELL, D. M.: Structural applications of nuclear spin-lattice relaxation times. Pure & Appl. Chem. 49: 1385~1401, 1977